

ALEXANDER ROAD HIGH SCHOOL

NOVEMBER 2023

MATHEMATICS – PAPER 2

2 HOURS

EXAMINER: R. WEBER

MODERATOR: I. CONRADIE

TOTAL: 100

Self-Assessment & Evaluation

Full Name:	
Date:	22 / 11 /2023
Subject:	GRADE 10 MATHEMATICS
Assessment:	Paper 2

<u>Before</u> you start your assessment:

What percentage are you aiming to achieve for this assessment?

On a scale of 1 to 5, how prepared do you feel for this assessment?

After the assessment:

What percentage did you think you achieved for this assessment?

%

On a scale of 1 to 5, how well do you feel you prepared for this assessment?

GRADE 10

ALEXANDER ROAD HIGH SCHOOL

MATHEMATICS - PAPER 2

NOVEMBER 2023

TIME: 2 HOURS

MARKS: 100

EXAMINER : R. WEBER

Name:	
Teacher Code:	
Date:	22 November 2023

QUESTION	TOTAL MARKS	LEARNER MARK	MODERATED MARK	CHECKED
1	9			
2	5			
3	16			
4	21			
5	13			
6	11			
7	7			
8	13			
9	5			
TO	TAL: 100			

INSTRUCTIONS:

- This question paper consists of NINE questions.
- Answer ALL the questions.
- Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical) unless stated otherwise.
- Answers must be rounded off to 2 decimal places, unless stated otherwise.
- Number your answers according to the numbering system used in this question paper.
- Write in ink, neatly and legibly. Diagrams may be done in pencil.
- An information sheet with formulae is provided below.

QUESTION 1:

The colle	Alex re	ecycling club o ach day was i	collecte ecorde	ed can ed and	ns for d the o	a peri data is	od of 2 s show	23 scl /n bel	nool d ow:	ays. T	he numb	er of cans	
			48	50	52	59	60	65	68	71			
			73	76	76	76	77	78	79	80			
			81	82	82	84	91	92	98				
1.1	Deter	mine the med	ian nur	mber	of car	ns coll	ected	each	day.				(1)
													_
1.2	Deteri	mine the rang	e of the	e data	à.								(1)
													_
													_
1.3	Deteri	mine the Inter	quartile	e Ran	ge (IC	QR).							(2)
1.4	Draw a box-and-whisker diagram to represent the data.									(3)			
	↓ 30												
1.5	The re	ecycling club ted 4 <u>less</u> car	realises ns per	s there day. F	e was How w	a mis vill this	stake i s impa	n the ct the	record	ds. Th	ey actual	ly	
	1.5.1	Range											(1)
													_
	1.5.2	Mean											(1)
													_
		<u> </u>											[9]

QUESTION 2:

The heights, h, of the learners at Hogwarts High School in a Grade 10 class were measured and recorded as follows:

Height/length (in cm)	No. of learners (f_{1})
$120 \le x < 130$	5
$130 \le x < 140$	6
$140 \le x < 150$	11
$150 \le x < 160$	13
$160 \le x < 170$	5
Total	40

2.3	In which interval would the median of the data lie?	(1)
2.2	Determine the estimated mean for the data. Round off your answer to the nearest cm.	(3)
		_
2.1	Write down the modal class for the data.	(1)

QUESTION 3:

3.1.4	Hence, determine the area of $\triangle ABC$.	(4)
		-
		-
		-
		-
		-
3.1.5	If AD BC, show that $m = -1$.	(2)
		-
		-

3.2	Two identical circles with centres $P(1; 2)$ and $R(-4; 14)$ touch a third circle with 0 as shown in the diagram below.	centre
	P, O and R lie on the same straight line.	
	P(1;2) • • • • • • • • • • • • •	
	Determine the length of the diameter of the third circle, with centre O, if the two identical circles each have a radius of 4,5 units each.	(3)
		[16]

QUESTION 4:

4.1	In the diagram below, $\triangle PQR$ is a right-angled triangle. PQLQR and QSLSR. $P = \left(\begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & $	
4.1.1	Write down a ratio for tan θ in the Δ PQR.	(1)
	$\tan \theta =$	
4.1.2	Write down the ratio for sec α .	(1)
	$\sec \alpha =$	
4.2	Given: $\hat{A} = 112,4^{\circ}$ and $\hat{B} = 48,6^{\circ}$.	
4.2.1	Determine the value of $sin(A - B)$.	(2)
4.2.2	Prove, using a calculator, that $\cos 2A = \cos^2 A - \sin^2 A$.	(3)
Additio	onal space:	

4.3	WITH	OUT USING A CALCULATOR, simplify as far as possible:	
	4.3.1	$\sqrt{3} \sin 60^\circ - \cos 45^\circ \cdot \sin 45^\circ - \sin 90^\circ$	(5)
	4.2.2	$\cos^2(180^\circ + x) \cdot \tan(360^\circ - x)$	(4)
		$\tan(180^\circ - x)$	
Additi	ional spa	ace:	t

I

QUESTION 5:

5.1	Solve for x, where $0^{\circ} \le x \le 90^{\circ}$. Give your answers correct to TWO decimal places.					
	5.1.1	$\csc x + 1,4 = 3$	(3)			

5.2.3	If the distance DB between John and Lindiwe is 144m, determine the angle of elevation, θ , from John to the top of the tower. Round your answer off to the nearest degree.	(3)
		[13]

QUESTION 6:

QUESTION 7:

The model below shape is constructed by using a hemisphere and a cone. The height of the model is 140 cm and the radius of the hemisphere is 40 cm.				
40cm 140cm $V = \frac{1}{3}\pi r^2 h$ $V = \frac{4}{3}\pi r^3$ $SA = \pi r^2 + \pi rs$ $SA = 4\pi r^2$	<u>e</u>			
Calculate the volume of the model in cm ³ .	(3)			
Calculate the total exterior surface area of the model in cm ² .	(4)			
	model below shape is constructed by using a hemisphere and a cone. height of the model is 140 cm and the radius of the hemisphere is 40 cm. $ \begin{array}{c} $			

QUESTION 8:

8.2	In the diagram below, BCDE is a parallelogram and BG = FD.	
8.2.1	Prove that $\triangle BGE \equiv \triangle DFC$.	(3)
		-
8.2.2	Hence, or otherwise, prove that EG FC.	(3)
		[13]

QUESTION 9:

In th	ne diagram below, $\widehat{D}_1 = \widehat{D}_2$, $\widehat{G}_1 = \widehat{G}_2$ and $DG = GF$.	
	H G H F	
9.1	Prove that DEFG is a parallelogram.	(5)
		[5]

	•
	-
	-
	-
	-
	-
	-
	_
	1
	-
	-
	-
	-
	-
	-
	-
	-
	_
]
	1
	-
	-
	-