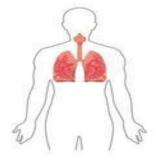
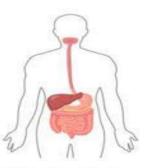
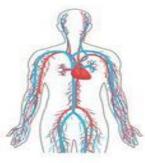

GRADE 9 NATURAL SCIENCE

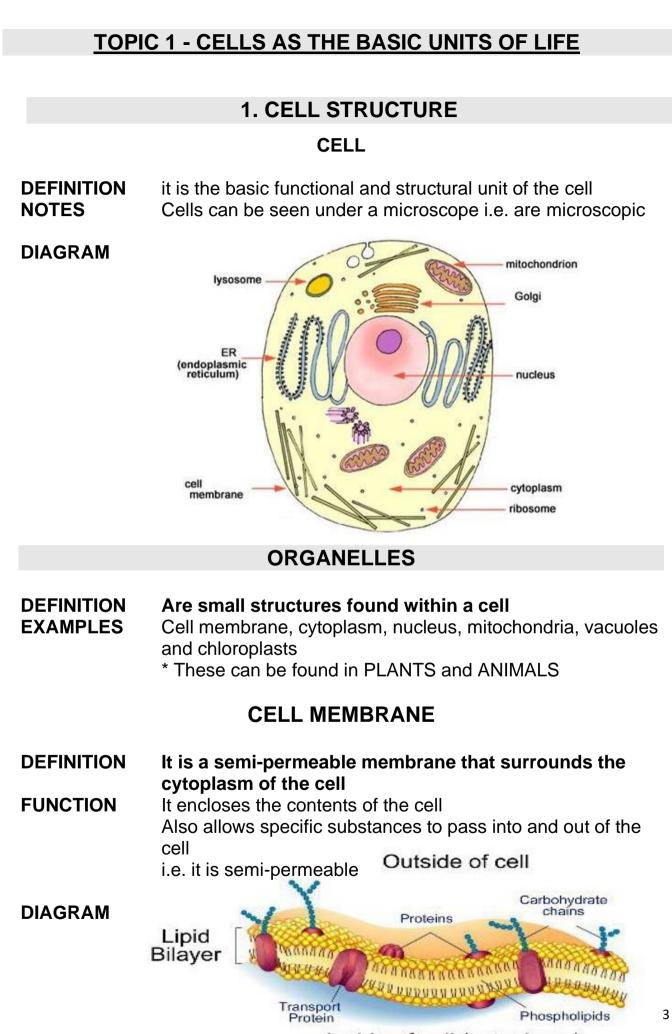

LIFE AND LIVING (BIOLOGY)

	CONTENTS
1	Cells as the basic units of life
	Cell structure
	 Differences between plants and animals
	 Cells in tissues, organs and systems
2	Body systems
	Digestive system
	- Healthy diet
	- The alimentary canal and digestion
	 Circulatory system AND Respiratory system Breathing, gaseous exchange, circulation and respiration
	Musculoskeletal system
	Excretory system
	Nervous system
	Reproductive system Burnese and puberty
	 Purpose and puberty Reproductive organs
	- Stages of reproduction

Human Organ System


Respiratory System


Muscular System


Nervous System

Digestive System

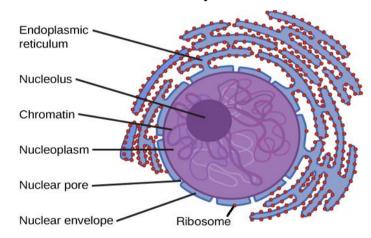
Circulatory System

Inside of cell (cytoplasm)

CYTOPLASM

DEFINITIONIt is the jelly-like medium (substance) within the cellFUNCTIONIt is where all chemical reactions take place within a cellAll organelles float within the cytoplasm

NUCLEUS

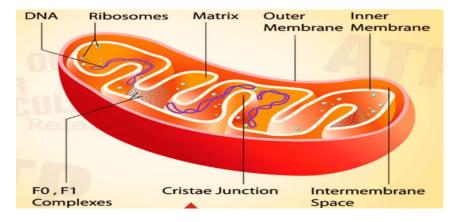

DEFINITIONIt is the "brain" of the cell as it contains all of the
hereditary information for an organismFUNCTIONIt controls all of the cells activities
It contains DNA – which contains all of the inherited

NOTES

DIAGRAM

DIAGRAM

characteristics e.g. eye colour, height and hair colour DNA (deoxyribonucleic acid) is unique to each person (this variation is why there is such diversity in species) The nucleus is enclosed by a nuclear membrane



MITOCHONDRIA

DEFINITION It is the powerhouse of the cell in which the process of cellular respiration occurs.

FUNCTION It breaks down glucose (from food), in the presence of oxygen, to make energy for all body cells i.e. Cellular Respiration

EQUATION Glucose + Oxygen → Energy + Carbon Dioxide + Water

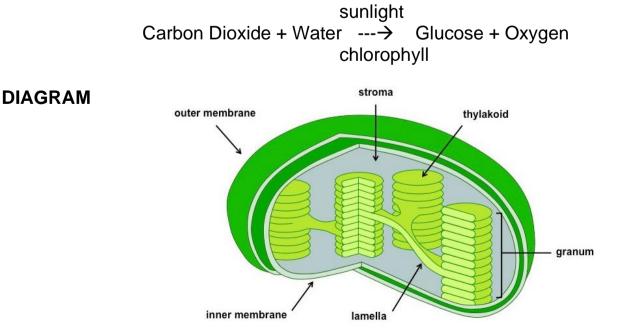
VACUOLES

DEFINITIONAre sac-like structures surrounding by a membrane
called the tonoplast that stores water and mineralsFUNCTIONIt is used for water control (osmoregulation)
Storage of water and minerals

Storage of water and minerals For turgor pressure in plants to maintain their structure

DIAGRAM

Central Vacuole

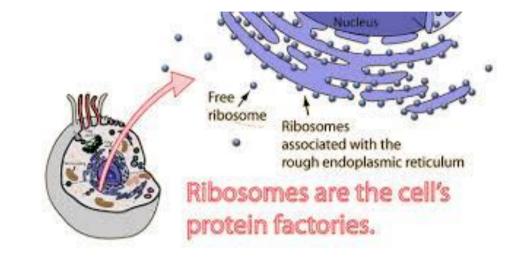

Figure: Vacuole, Image Copyright © Sagar Aryal, www.microbenotes.com

CHLOROPLAST

DEFINITIONA membrane-bound organelle that absorbs sunlight to
produce food during the process of photosynthesis
It contains chlorophyll that absorbs the UV radiation to
produce carbohydrates and oxygen during the process of

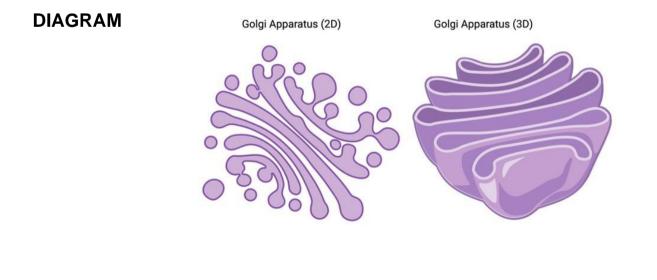
photosynthesis <u>Chlorophyll</u> – is the green pigment in plants that absorbs light energy from the sun and helps with the formation of energy rich glucose (photosynthesis).

EQUATION



RIBOSOMES

DEFINITION Are small round structures usually associated with the endoplasmic reticulum, but can be found floating freely within the cytoplasm

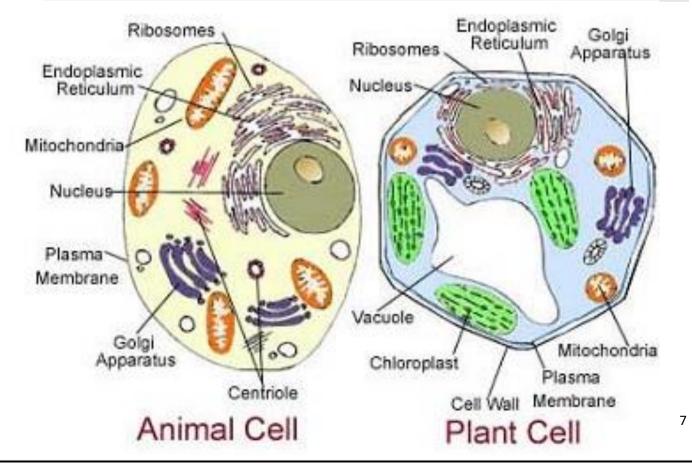

FUNCTION Are the sites of protein synthesis (the process of manufacturing proteins)

DIAGRAM

GOLGI BODY

DEFINITIONFolded membranes within the cytoplasm that are
involved in secretion and intracellular transportFUNCTIONThe process, package and transport proteins from the
endoplasmic reticulum and transport these proteins around
the cell

ENDOPLASMIC RETICULUM (ER)


DEFINITION This is a series of membranes associated with the nucleus for transport of substances between the nucleus and golgi body

DIAGRAM

FUNCTION Involved in protein synthesis (Rough ER) and lipid synthesis (Smooth ER) and transport them from the nucleus to the golgi body

Nucleus Nuclear Envelope Rough ER Ribosome Smooth ER

2. DIFFERENCES BETWEEN PLANT AND ANIMAL CELLS

DIFFERENCES BETWEEN PLANT CELLS AND ANIMAL CELLS

Plant cell	Animal cell
Has chloroplasts	No chloroplasts
LARGE vacuole	Small or no vacuoles
Cell wall present	Cell wall absent
Regular shape	Irregular shape

SIMILARITITES BETWEEN PLANT CELLS AND ANIMAL CELLS

The following organelles are the same for both plants and animals

cell membrane, cytoplasm, nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, ribosomes

<u>Activity</u>

Complete Activity 4 (pg 6 in textbook)

numbers 1 a to c & 2 a to f in your notebook.

3. MICROSCOPE

MICROSCOPE Is an instrument that contains one or more magnifying lenses. We commonly use a compound light microscope in biology.

FUNCTION It allows us to look at things that are too small to see with the naked eye (i.e. microscopic)

DIAGRAM See page 7 of your textbook for the labels of the LIGHT MICROSCOPE below

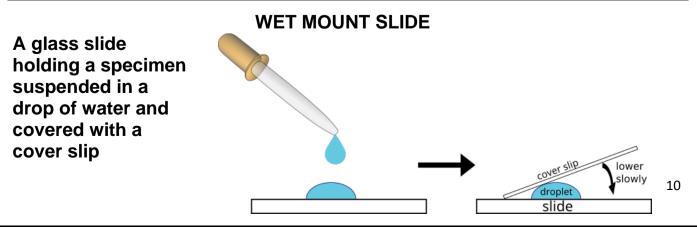
Provide the funct	ions for the following parts
Body tube	Contains the lenses that magnify the object
Rotating	Structure that rotates to allow one of three lenses to be
nosepiece	used to view the specimen
Objective lenses	Lenses closest to the specimen. There are usually 3 of
	them.
Stage clip	Holds the microscope slide in place
Mirror	Directs light up through the microscope
Base	Supports the lenses and the stage
Diaphragm &	Diaphgram - Adjusts amount of light passing through the
condenser	microscope
	Condenser – focuses the light onto the specimen
Stage	Platform that the slide is placed on
Arm	Connects the body tube to the base & used to carry the
	microscope
Fine focusing	Turning the knob changes the distance between the stage
knob	& objective lense SLOWLY – for image clarity
Course focusing	Turning the knob changes the distance between the stage
knob	& objective lense QUICKLY – for rough image focus

ACTIVITY

Read page 8 of your textbook for how to use a light microscope

DEMO

Your teacher will demo the use for you


And you will have a chance to study an onion cell under the microscope – through your own creation of a wet mount slide

ACTIVITY

Read page 10 of your textbook for how to make a wet mount slide

DEMO

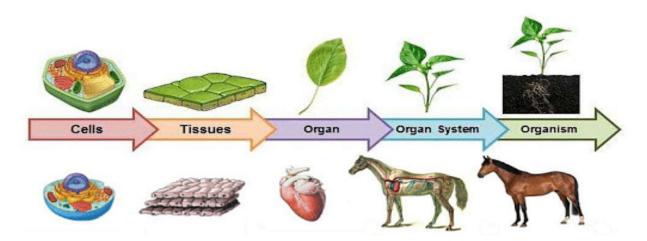
Your teacher will demo the making of wet mount slide

Magnification on objective lenses

This is the magnification number on the objective lens.

- sometimes it is printed in a larger size font than the other numbers
 (it can be the number alone or with an X next to it)
- sometime it is printed in the same size font as the other numbers followed by an X

4 X


Calculating the magnification of a microscope

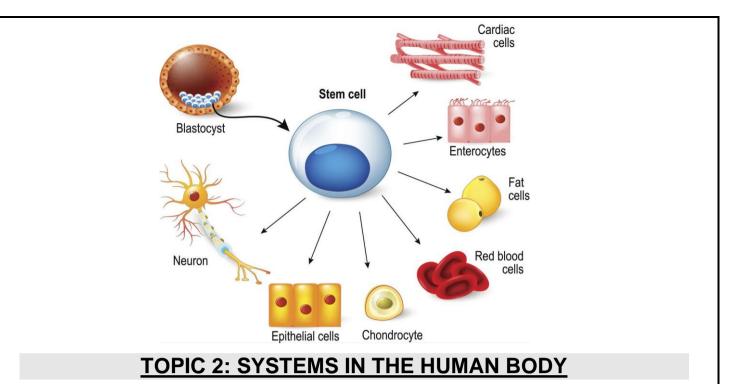
Magnification = magnif of eyepiece (ocular lens) x magnif of objective lens

ACTIVITY

Calculate the magnification of the object if the eyepiece has a magnification of 10 X and the objective lens has a magnification of 40 X.

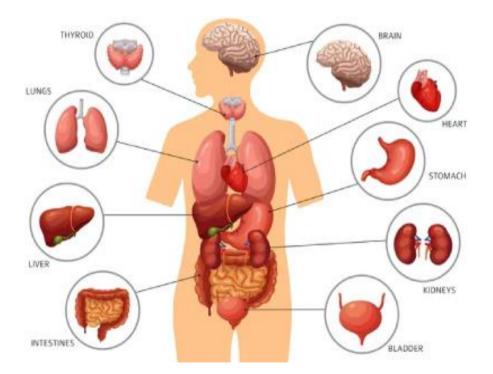
4. CELLS IN TISSUES, ORGANS AND SYSTEMS

ACTIVITY


Cells Tissue Tissue Organ	 Cell from intestine (only visible under a microscope)
Organ	Group of lining cells (tissue) (microscop
	Small intestine (organ)
System	Liver (organ) (organ) Liver (organ) Large inter (organ) Small int (organ)

Organism	Human (organism)
	Circulatory system
	Respiratory system
	Digestive system
The following terms are als	o important:

Unicellular	Consisting of 1 cell
	e.g. An amoeba
Multicellular	Consisting of many cells
	e.g. Human beings
Macroscopic	Large enough to see with the naked eye
	e.g. Liver tissue
Specialise	To take on a particular function & only perform that function
	NB – Form/structure of the cell determines the function of the cell
	e.g. muscle cells, kidney cells etc


STEM CELLS

What are stem cells?	Stem cell are cells that are undifferentiated. (<u>Undifferentiated</u> - means that the cells have not yet developed into any specific cell in the body.) They are able to become specialised to form almost any specialised cell in the body.
	A stem cell can become a liver cell, or a blood cell, or a nerve cell or any other type of cell in the body.
Stem cells can be harvested from	 1 → embryo's (this is very controversial as it kills the embryo) 2 → stem cells can also be harvested from the blood in the umbilical cord. 3 → adult stem cells are harvested from bone marrow and from blood.

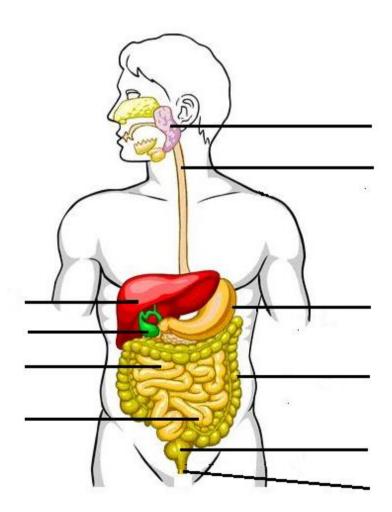
There are 7 major<u>integrated</u> (i.e. working together) systems in the human body

- 1. Digestive system
- 2. Circulatory system
- 3. Respiratory system
- 4. Musculoskeletal system
- 5. Excretory system
- 6. Nervous system
- 7. Reproductive system

1. DIGESTIVE SYSTEM

FUNCTION

Breaks down food into soluble nutrients that can be absorbed into the bloodstream

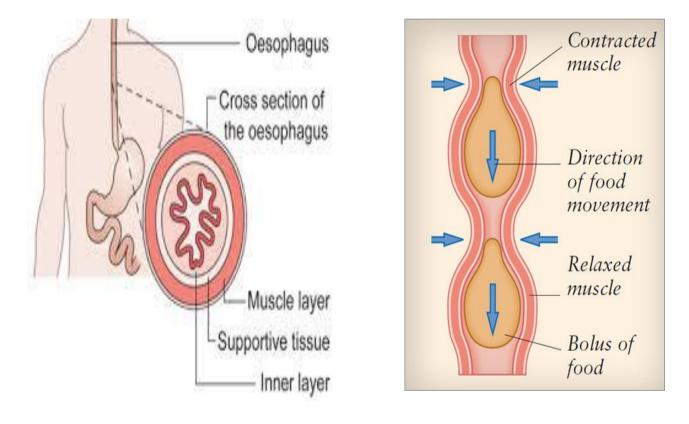

Large insoluble pieces \rightarrow much smaller soluble molecules

MAINMouth, Oesophagus, Stomach, Intestines and LiverCOMPONENTS

MAIN PROCESSES

- **Ingestion** intake of food (biting, chewing, swallowing)
- Digestion Conversion of insoluble food into soluble molecules.
 - Absorption soluble nutrients taken up by blood stream
 - Egestion elimination of undigested material (faeces)

DIAGRAM Identify the parts of the digestive system by labeling the drawing below

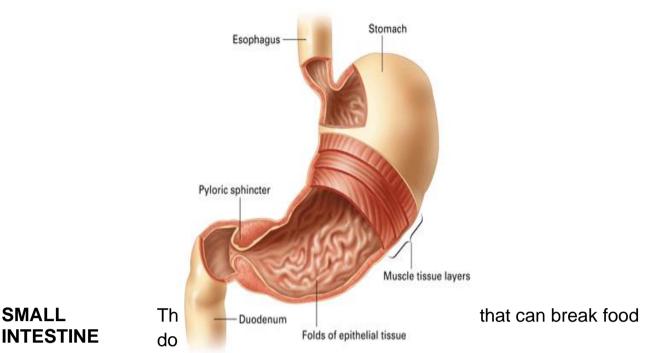

DIVIDED INTO 21 – Alimentary CanalPARTS2 – Associated organs

ALIMENTARY CANAL

MOUTH Ingestion takes place here.

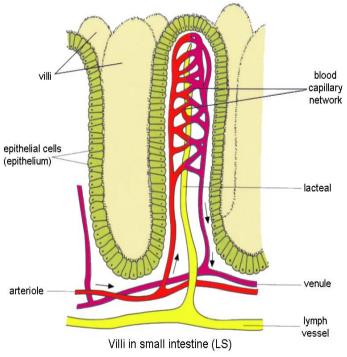
OESOPHAGUS The walls of the oesophagus consists of <u>muscles</u> (2 layers) The muscle layers contract to push food down the oesophagus and the rest of the alimentary canal.

The movement of food down the oesophagus and alimentary canal is called **PERISTALSIS**.



STOMACH

Has thick muscular walls that **churn** (mixes) the food in the stomach. This breaks the food into smaller particles. **Enzymes** then break down the food chemically into


smaller molecules. The enzymes are secreted by the lining of the stomach.

An enzyme is a protein that speeds up the rate of a chemical reaction (ie. It speeds up the breakdown of food).

The walls of the small intestine contain millions of tiny VILLI. (villus – singular). The villi are responsible for absorption of digested food.

Digested food that is **absorbed by the villi** ends up in the **blood stream.**The bloodstream carries the digested food to the cells.

LARGE INTESTINE

SMALL

The large intestine **absorbs water** back into the blood. The undigested waste that's left becomes more compact and forms stools or faeces.

RECTUM	Stools (faeces) are temporarily stored in the rectum.		
ANUS	The end opening of the digestive system through which waste is egested.		
	ACCESORY ORGANS		
LIVER	Is the largest gland in the body. Function: Forms bile. Bile assists in the digestion of fats.		
OTHER ORGANS	Teeth: Helps to chew and break down complex food molecules before it moves down the oesophagus Tongue: The tongue helps to mix the food with saliva. This aids swallowing after the food has been chewed.		
	Pancreas: Aids in blood sugar control – via hormones INSULIN and GLUCAGON Also aids in digestive by releasing DIGESTIVE JUICES into the small intestine		
	Gall Bladder: Bile is stored in the gall bladder.		
	TYPES OF DIGESTION		
MECHANICAL DIGESTION	chewing in the mouth and churning movements of the stomach break large food particles down into smaller pieces, (this increases surface area to speed up chemical digestion).		
CHEMICAL DIGESTION	involves enzymes. Small food particles are broken down chemically to even smaller soluble molecules (that can be absorbed).		
	DIGESTIVE DISORDERS AND DISEASES		
ULCERS	are sores on the inside of the stomach and intestine.		

ANOREXIA is a disorder where people fear gaining weight so they starve themselves excessively to lose weight.

DIARRHOEA is a condition where a person has more than five bowl movements or watery stool per day.

LIVERis a disease of the liver (often caused by excessive use of
alcohol).CIRRHOSISalcohol).

- **CONSTIPATION** occurs when stools become too hard and difficult to pass. Occurs if we do not eat enough fibre. Chronic constipation can lead to colon cancer and haemorrhoids.
- **OBESITY** is a condition where the person involved consumes more food than the body for normal daily functioning. As result they become overweight.
- **DIABETES** occurs when the body is not able to control the amount of sugar in the blood.

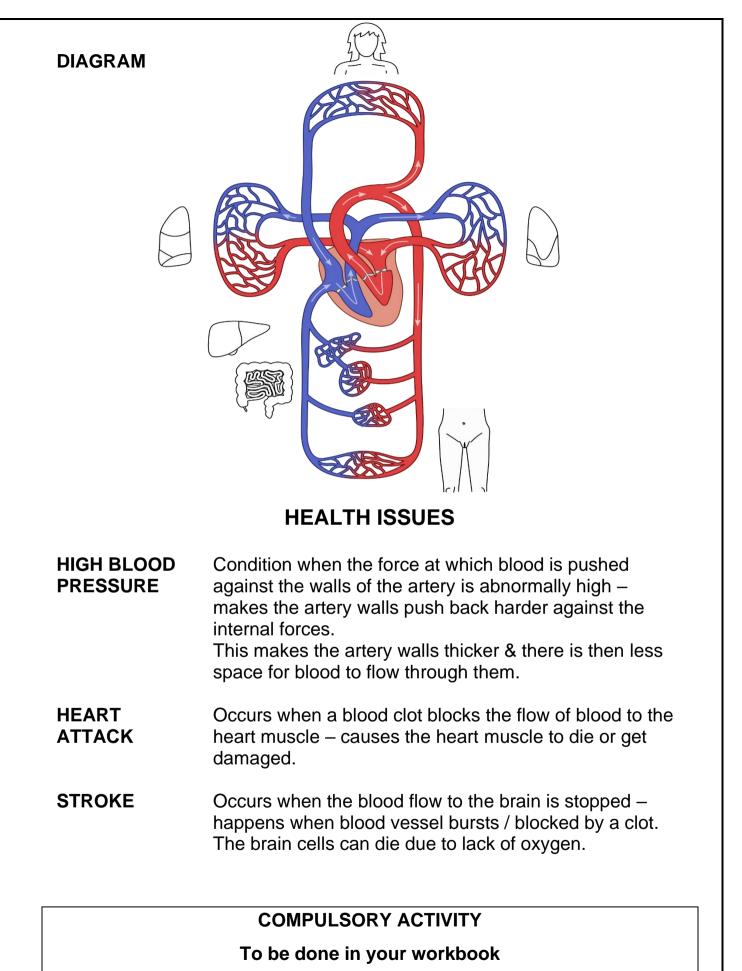
WHY IS WATER IMPORTANT IN YOUR DIET?

Most of your body consists of water

Water's importance:

- * All chemical reactions take place in water.
- * serves as a solvent for nutrients, waste and gases.
- * transports nutrients and waste products in the body.
- * plays a role in digestion.

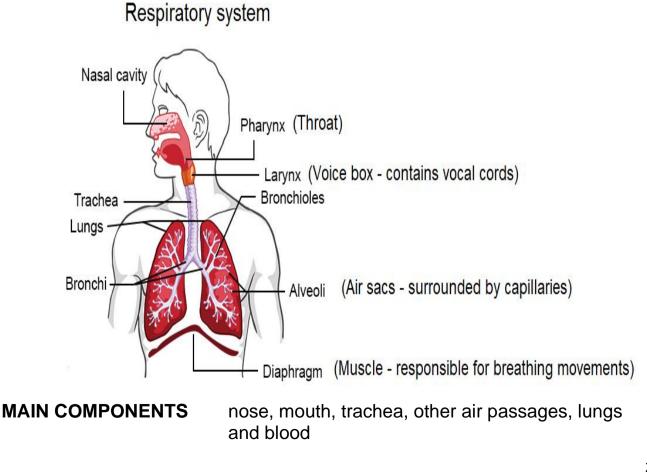
WHAT IS MEANT BY A BALANCED DIET?


a diet that contains adequate amounts of all the necessary nutrients from all of the food groups required for healthy growth

COMPULSORY ACTIVITIES

To be done in your workbooks

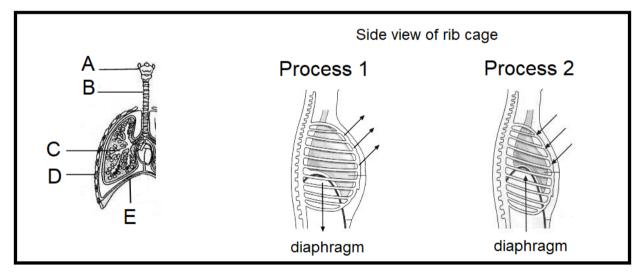
Page 21 – Activity 3.2. a - dPage 69 – Activity 4.1. to 4.2. Page 71 – Activity 5.1 – 5.7.


	2. <u>CIRCULATORY SYSTEM</u>
FUNCTION	The circulatory system transports substances around the body.
SUBSTANCES TRANSPORTED	 Blood carries: * oxygen and nutrients to cells * waste products and carbon dioxide away from cells for excretion. * waste products are transported by the blood to excretory organs like the kidneys and the skin.
3 MAIN COMPONENTS	 Heart pumps blood to the lungs and the rest of the body.
	 2) Blood vessels transports blood around the body. * Arteries carry blood away from the heart * Veins carry blood towards the heart. * Capillaries are very small blood vessels that are found between arteries and veins.
	 Blood carries and oxygen and nutrients to the cells. It also carries carbon dioxide and waste products from cells.
MAIN PROCESSES	 Circulating blood between the heart and lungs. This is called PULMONARY CIRCULATION. The blood that returns to the heart from the lungs is rich in oxygen (we say that it is oxygenated).
	 2) Circulating blood between the heart and cells of the body. This is called SYSTEMIC CIRCULATION. The heart pumps oxygen rich blood from the lungs to every cell in the body.

Page 23 – Activity 5.1 – 5.4.

3. RESPIRATORY SYSTEM BREATHING, GASEOUS EXCHANGE, CIRCULATION AND RESPIRATION **RESPIRATORY SYSTEM** The respiratory system is responsible for breathing, gaseous exchange and respiration. BREATHING Process involved in getting air into and out of the lungs via: Inhalation (process that gets air into the i) luna) ii) Exhalation (process that gets air out of the lung) GASEOUS EXCHANGE (process where gases diffuse from a region of high concentration to a region of low concentration) Occurs in two places (1) the lung and (2) the body cells RESPIRATION Is a chemical reaction that occurs in the mitochondria of cells

DIAGRAM


BREATHING MECHANISM – INHALATION VS EXHALATION

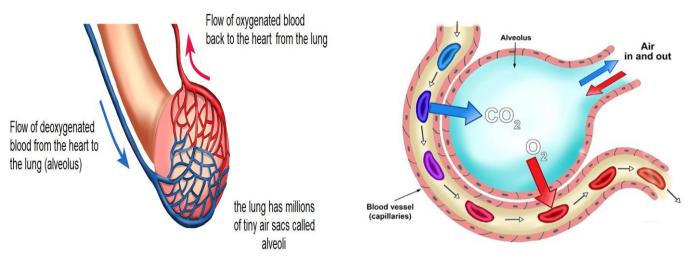
(Table. Differences between initialation & exitalation)		
Inhalation (how air enters lungs)	<u>Exhalation</u> (how air leaves the lungs)	
 Diaphragm contracts, which causes diaphragm to move downward. Intercostal muscles contract. This causes the rib cage to expand (upwards and outwards) Volume of chest cavity increases Pressure in the chest decreases. Air rushes in from a high pressure (outside the lung) into the lung (lower pressure) down the air passages. 	 Diaphragm relaxes, which caused the diaphragm to move upward. Intercostal muscles relax. This causes the rib cage to return to its original position. Volume of chest cavity decreases Pressure in the chest increases. Air rushes in from a high pressure (inside the lung) to a lower pressure outside via the air passages. 	

(Table: Differences between inhalation & exhalation)

ACTIVITY (EXAM-TYPE QUESTION)

Study the diagrams below that deal with the respiratory system and answer the questions that follow in your notebooks.

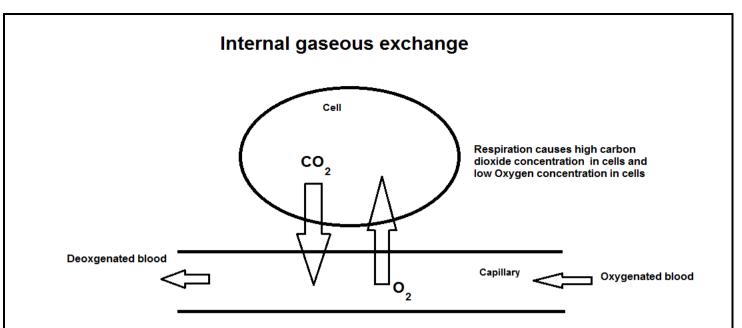
- 1. Identify the parts labeled A to E.
- 2. Which of the labeled parts are air passages?
- 3. Which process (process 1 or process 2) represents exhalation? (1)
- 4. Provide 2 reasons for your answer to Q.3


(5)

(2)

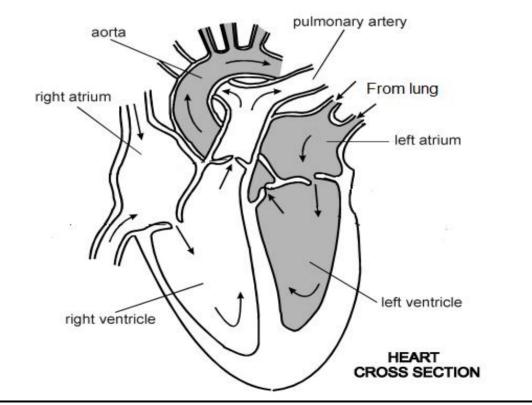
(2)

GASEOUS EXCHANGE – 2 LOCATIONS (A) AT THE LUNGS


- Blood coming towards the alveolus from the heart is deoxygenated, it has a high[CO₂] and a low [O₂] (because of cellular respiration)
- The air that is breathed in has a low [CO₂] and a high [O₂]. It is oxygenated.
- Gaseous exchange happens along the respective concentration gradients at the lung.
- O₂ diffuses into the capillaries from the alveolus.
- CO₂ diffuses into the alveolus from the capillaries.
- The capillaries now contain oxygenated blood.
- The blood leaving the alveolus has higher [CO₂] and a lower [O₂] than the blood coming towards the alveolus.

(B) AT THE BODY CELLS

- oxygenated blood leaves the heart through the aorta
- the aorta branches to form smaller and smaller arteries and eventually form
- capillaries which run past body cells this blood has a higher oxygen concentration and a lower carbon dioxide concentration than the body cells
- because of cellular respiration.
- oxygen therefore diffuses down its concentration gradient from the capillary to the body cell.
- carbon dioxide diffuses down its concentration gradient from the body cell to the capillary.
- The blood that is transported back to the heart has a higher carbon dioxide


concentration and a lower oxygen concentration than the blood that was carried towards the body cells.

CIRCULATION OF OXYGENATED AND DEOXYGENATED BLOOD

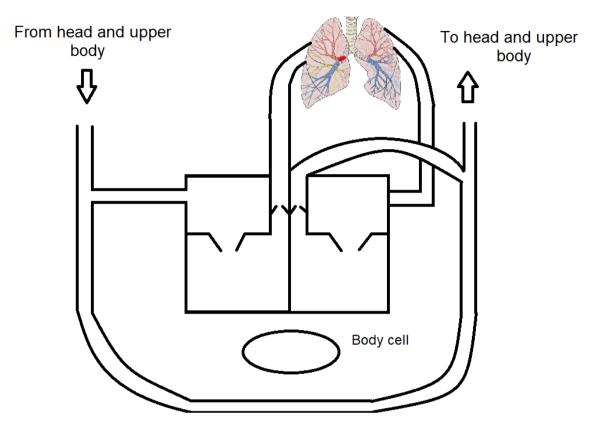

- deoxygenated blood enters the heart at the right atrium.
- it passes into the right ventricle.
- the right side of the heart then pumps the deoxygenated blood to the lungs where gaseous exchange takes place.
- The oxygenated blood from the lungs return to the heart and flows into the left atrium.
- from the left atrium, it gets pumped to the left ventricle.
- the oxygenated blood then gets pumped from the left ventricle through the aorta to the body through a network of arteries.

DIAGRAM OF BLOOD CIRCULATION WITHIN THE HEART

ACTIVITY Diagram showing blood flow through the heart.

Colour in the deoxygenated blood (right side of heart up to lung) and the oxygenated blood (from lung through the right side of the heart) in two different colours.

THE ROLE OF THE CIRCULATORY SYSTEM AND RESPIRATORY SYSTEM (ARE INTEGRATED SYSTEMS)

- These systems work together
- Deoxygenated blood (blood with a low O₂ concentration and a high CO₂ concentration) flows from the cells of the body to the heart.
- The heart pumps the deoxygenated blood to the lungs.
- Oxygen is inhaled by the lungs during breathing <-
- Oxygen diffuses into the bloodstream (External gaseous exchange)
- Carbon dioxide diffuses from the bloodstream to the lungs.
- Oxygenated blood leaves the lungs and returns to the heart.
- Heart pumps oxygenated blood to the body cells.
- Oxygen diffuses from bloodstream into the body cells.
- Carbon dioxide diffuses from the body cells into the bloodstream.
- Deoxygenated blood is transported back to the heart.
- Heart pumps deoxygenated blood to the lungs.

ACTIVITY

The cycle then repeats

Complete the following table using information from pg.55 of the textbook.

	Arteries	Veins	Capillaries
Direction of	away from heart	towards heart	from arteries to
blood flow			veins
Type of blood	oxygenated	deoxygenated	changing from
transported	(except	(except	oxygenated to
	pulmonary	pulmonary	deoxygenated
	artery)	vein)	
Thickness of	Thick	thin	very thin
walls			
Blood pressure	High	low	low
in vessels			

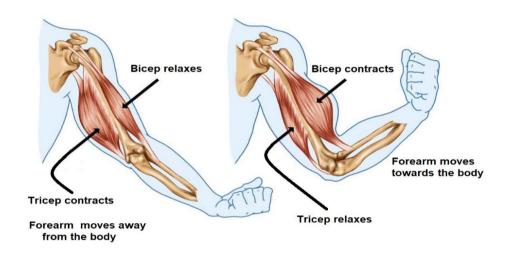
ACTIVITY Define the following terms (pg.52) in your notebook

Gaseous exchange Diffusion gradient Deoxygenated blood Oxygenated blood Circulation Atrium Ventricle

HEALTH ISSUES OF RESPIRATORY SYSTEM

ACTIVITY FIND THE DEFINITIONS OF THE FOLLOWING HEALTH ISSUES – PAGE 25 OF YOUR TEXTBOOK

ASTHMA	
LUNG CANCER	
BRONCHITIS	
ASBESTOSIS	


4. MUSCULOSKELETAL SYSTEM

FUNCTIONS

- The muscles are used to move the bones, which acts as levers.
 - The musculoskeletal system provides support to the body and brings about movement.

MAIN PROCESSES

- Contraction and relaxation of muscles attached to bone brings about movement - known as locomotion.
- Some muscles work in pairs.
- While one contracts the other relaxes.
- Eg. When bicep contracts, tricep relaxes in order to raise the forearm.

COMPONENTS (WITH THEIR SPECIFIC FUNCTIONS) Consists of bones (skeleton) and muscles.

- Muscles move bones.
- Bones act as levers.
- Ligaments connect bone to bone (like the ligaments in the fingers) They're elastic. Can be over stretched (sprained) or torn. Never quite shrink back to original length thus putting the joint more at risk of injury again.
- Tendons connect bone to muscle. Non-elastic
- Cartilage covers the ends of bones. The cartilage prevents friction between bones.

DIAGRAM

RICKETS

HEALTH ISSUES

Is a disease which leads to softening and weakening of

	bones - due to a lack of calcium and vitamin D in the diet of young children.
	 It can affect the bones of the legs, pelvis and spine of young children.
ARTHRITIS	is caused by inflammation of the joints. It is caused by the breakdown of cartilage in the joint (painful!).
OSTEOPOROSIS	is a disease where bones become very brittle in old age. This leads to an increase in risk of bone fractures.
	ACTIVITY
Using page 26	of your textbook – provide the definitions of the following
	1. Ligaments
	2. Tendons
	3. Cartilage
	4. Locomotion
	29

5. EXCRETORY SYSTEM FUNCTION Removal of waste products as a result of metabolic activities COMPONENTS kidney, ureter, bladder and urethra. Kidney → separates waste substances from useful substances (like glucose and nutrients). NOTES Metabolism = all the chemical reactions that happen in the body (in cells) Waste products produced by these reactions need to be removed from the body. The removal of waste products from the body is called excretion. • Examples of waste products include urea and uric acid. Excess water is also removed from the body. The removal of excess water from the body is called osmoregulation. Provide labels for the diagram below ACTIVITY

PROCESS OF EXCRETION

INFECTIONS

KIDNEY

STONES

DIVIDED INTO 4 STAGES:

• 1) Filtration:

the kidney separates the red blood cells from the liquid part of blood (plasma). The liquid part of the blood after filtration is called the **filtrate**

2) Absorption:

the filtrate passes into narrow tubes in the kidney and useful substances like glucose are reabsorbed

3) Diffusion:

waste products which are still in the blood diffuse into the filtrate in the tubes.

• 4) Excretion:

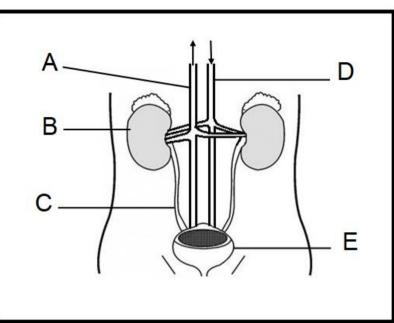
once these processes are complete then the fluid in the tubules is called **urine**. The urine is carried by the ureter to the bladder. The bladder stores urine - passes out of the bladder through the urethra.

HEALTH ISSUES

KIDNEYCaused by a sudden loss of the ability of the kidneys to
remove waste and concentrate urine without losing
electrolytes.

Treatment:

People who suffer from renal failure need dialysis treatment to filter waste from blood.


BLADDER caused by bacteria that infect the urinary tract.

are solid deposits of minerals and salts that form in the kidneys.

ACTIVITY

EXAM TYPE QUESTION

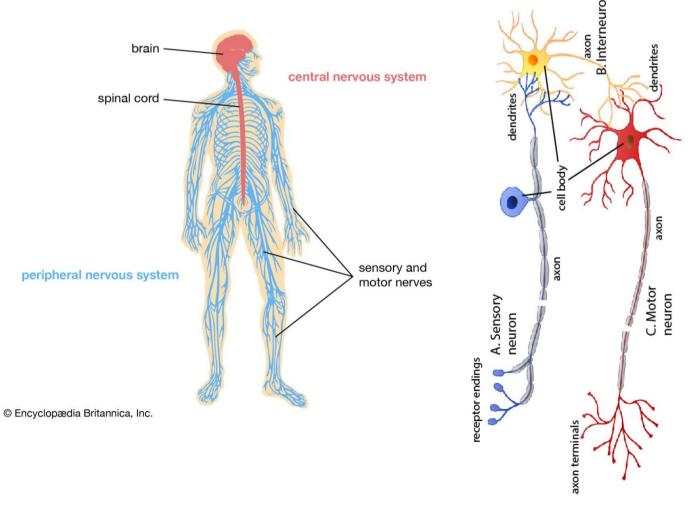
Study the diagram below that deals with the excretory system and write the answers in your notebook.

1.	Identify the parts labelled B, C and E.	(3)
2.	Compare the blood being carried in A and D with regard to:	
	2.1. Oxygen concentration.	(2)
	2.2. Concentration of waste products.	(2)
3.	Describe what is meant by kidney failure.	(2)
4.	How is kidney failure treated?	(1)

6. NERVOUS SYSTEM

FUNCTION The nervous system helps the body respond to stimuli from the environment.

STIMULUS A stimulus is a change in the environment that causes a reaction in living organisms.


Examples: include change in temperature, light intensity, smells, movement, sound, feeling and chemical

MAINBrain, spinal cord, nerves and sense organs (eyes, ears,COMPONENTSskin, tongue , nose)

The **spinal cord** is nerve tissue that is encased in the spine. It carries impulses from the brain to the body

The sense organs have specific cells called **receptors** The receptors convert stimuli to **electrical impulses**

DIAGRAM

ELECTRICAL The electrical impulses are weak electrical currents **IMPULSES**

These electrical impulses are carried by nerve cells called **neurons.**

THREE NEURON (NERVE CELL) TYPES

- A) The electrical impulses are transported to the central nervous system (the spinal cord) by a **sensory neuron.**
- B) The sensory neuron passes the electrical impulse to a **connector neuron.**
- C) The connector neuron passes the impulse to a **motor neuron.**

ACTIVITY DEFINE THE FOLLOWING TERMS Use page 30 of your textbook Complete it in your notebooks

Stimulus	Nerve cells
receptors	Spinal cord
impulses	

HEALTH ISSUES

ACTIVITY

Using page 30 find the definitions for the following health issues

Deafness	Blindness
Short-sightedness	

	7. REPRODUCTIVE SYSTEM
FUNCTION	 reproductive system produces sex cells for the continuation of the species.
	 male sex cells (also known as gametes) are called sperm cells female sex cells (or gametes) are called egg cells. these cells need to fuse in order to ensure that the human species continues to live from generation to generation.
	MAIN PROCESSES
COPULATION	The man places his penis inside the woman's vagina (sexual intercourse)
EJACULATION	The penis releases sperm cells into the vagina of the woman
OVULATION	Once a month, an egg cell is released into the woman's fallopian tubes
FERTILISATION	One sperm cell fuses with an egg cell
MENSTRUATION	The lining of the uterus is released through the vagina, if fertilisation has not taken place.
CELL DIVISION	The fertilised egg divides to form more cells.
GROWTH	Cell division continues, more and more cells are formed.
IMPLANTATION	The fertilised egg moves down the tubes and attaches itself to the lining of the uterus.
MATURATION	The baby is born after 40 weeks, it grows and develops into an adult.
PUBERTY	 This is the stage in the life cycle when the sexual organs mature for reproduction The changes that occur during puberty are caused by two hormones testosterone in boys oestrogen in girls

ACTIVITY

Complete Activity 2 on pg.37 in your notebooks The answers to the questions can be found on pg.36 - 37

ACTIVITY

Using your textbook page 39 figures 8 and 9 outline the changes that occur in 1) a boy's body during puberty 2) a girl's body during puberty

MALE REPRODUCTIVE SYSTEM – PARTS AND FUNCTIONS

PROSTATE GLANDS AND VESICLES

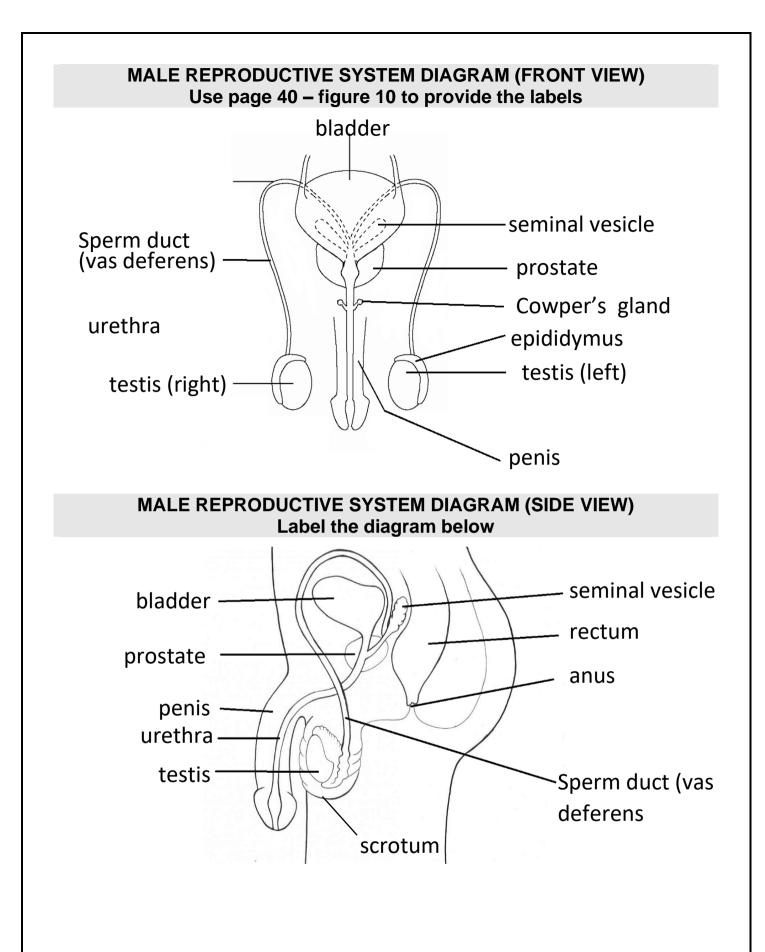
- Prostate gland, Cowper's gland and seminal vesicle:secrete seminal fluid for nutrition for the sperm
- that is alkaline to neutralise the acid from the female vagina
- and it increases the movement of the sperm

URETHRA Carries:

- urine from the bladder to the outside
- semen out of the body

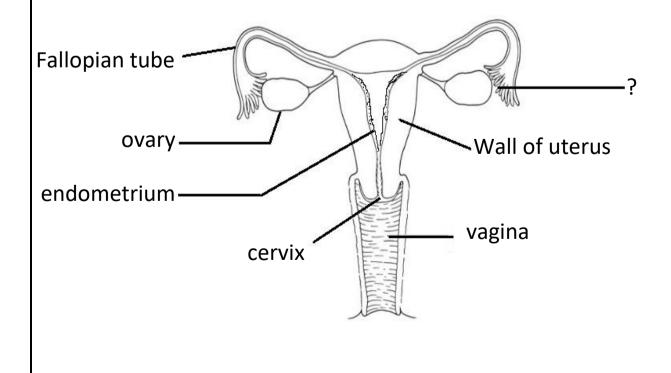
SPERM DUCTPushes semen out of the body through muscular(VAScontractions.

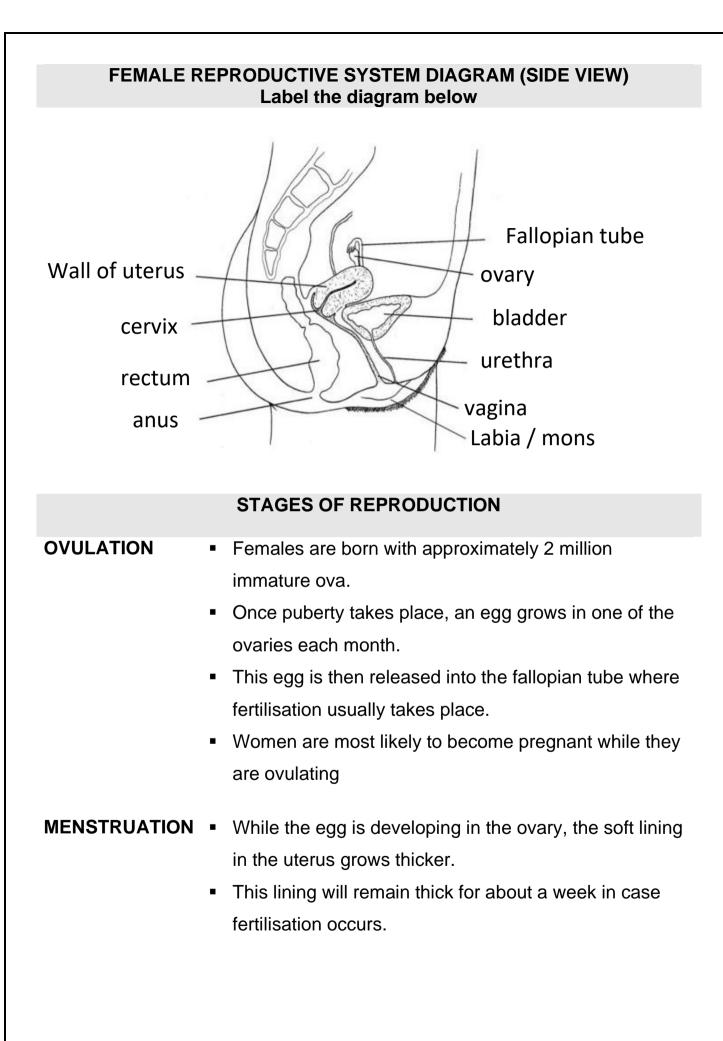
DEFERENS) EPIDIDYMIS


Final maturation of sperm occurs here. Stores sperm.

TESTES

Produces:


- sperm in seminiferous tubules.
- testosterone
- **SCROTUM** Protects the testes


DIAGRAM OF Draw the diagram on page 37 figure 5 – sperm cell **SPERM**

FEMALE REPRODUCTIVE SYSTEM – PARTS AND FUNCTIONS

FALLOPIAN TUBE	Carries egg towards the uterus This is where fertilisation occurs (important)
OVARY	Produces:The eggHormones (oestrogen + progesterone).
UTERUS	Baby develops in the uterus.
ENDOMETRIUM	Lining of the uterus. It is the landing ground of the fertilised egg (blastocyst). The endometrium is lost during menstruation.
CERVIX	Opening of the uterus It needs to dilate (open) in order for the baby to be delivered
VAGINA	Birth canal. This is where sperm is deposited during intercourse. (copulation)
EGG CELL DIAGRAM	Draw the diagram on page 37 figure 6 – egg cell
	REPRODUCTIVE SYSTEM DIAGRAM (SIDE VIEW) are page 42 – figure 13 to provide the labels

	 If it does not occur, the lining passes out of the body through the vagina during a process called menstruation. The menstrual cycle lasts for 28 days (on average).
	MENSTRUATION HAS 3 STAGES
STAGE 1: MENSTRUATION	 The lining of the uterus (called the endometrium) is needed for an unborn baby to survive. If a woman falls pregnant (if fertilisation occurs) then the endometrium remains intact. However if fertilisation does not take place then the endometrium comes away from the uterus and leaves the body through the vagina. This is accompanied by bleeding. The first day of menstruation is considered Day 1 of the menstrual cycle.
STAGE 2: OVULATION	 Menstruation ends by Day 7 During this period (Day 1 to Day 7) an egg develops in a follicle in the ovary. This egg is released from the ovary on day 14. The release of the egg from the ovary is called ovulation.
STAGE 3: MOVEMENT OF THE EGG ALONG THE FALLOPIAN TUBE	 The egg that is released during ovulation travel down the fallopian tube towards the uterus

S	TAGES OF REPRODUCTION CONTINUED
COPULATION	 Copulation refers to sexual intercourse. The penis becomes erect and is placed inside the vagina. Sperm made in the testes enters the vagina.
FERTILISATION	 Important: Fertilisation occurs in the fallopian tube The penis deposits sperm into the vagina. The sperm swims up the uterus and into the fallopian tube. Most sperm do not survive the journey. If there is an egg in the oviduct the sperm may fuse with the egg resulting in a zygote.
IMPLANTATION	 The zygote grows and forms a ball of cells. It moves from the fallopian to the uterus where it implants itself into the uterine lining. It is now called an embryo.
PREGNANCY	 The embryo grows and for the last 7 months of pregnancy it is called a foetus. The pregnancy period is often referred to as gestation and lasts for about 40 weeks. After 40 weeks the baby will be born.

	CONTRACEPTION = means to prevent fertilisation
	(Also called birth control)
CONDOM	Is a rubber sheath rolled onto the penis BEFORE
	intercourse
	 To act as a barrier to stop sperm entering the female
	vagina
	 Also prevents mixing of fluids → e.g. for people with
	STI's – sexually transmitted infections (i.e. HIV)

HEALTH ISSUES

See page 33 and find the definitions for the following

INFERTILITY	
FOETAL ALCOHOL SYNDROME	
STDs	

COMPULSORY ACTIVITIES

Complete Activity 2 page 37 numbers 1 and 2

Complete Activity 3 page 39 numbers 1, 2 and 3

Complete Activity 5 page 41 numbers 1, 2, 3 and 4

Complete activity 7 page 45 numbers 1, 2 and 3